Relativistic Dynamos in Magnetospheres of Rotating Compact Objects
نویسنده
چکیده
The kinematic evolution of axisymmetric magnetic fields in rotating magnetospheres of relativistic compact objects is analytically studied, based on relativistic Ohm’s law in stationary axisymmetric geometry. By neglecting the poloidal flows of plasma in simplified magnetospheric models, we discuss self-excited dynamos due to the frame-dragging effect (originally pointed out by Khanna & Camenzind), and we propose alternative processes to generate axisymmetric magnetic fields against ohmic dissipation. The first process (which may be called induced excitation) is caused by the help of a background uniform magnetic field in addition to the dragging of inertial frames. It is shown that excited multipolar components of poloidal and azimuthal fields are sustained as stationary modes, and outgoing Poynting flux converges toward the rotation axis. The second one is self-excited dynamo through azimuthal convection current, which is found to be effective if plasma rotation becomes highly relativistic with a sharp gradient in the angular velocity. In this case no frame-dragging effect is needed, and the coupling between charge separation and plasma rotation becomes important. We discuss briefly the results in relation to active phenomena in the relativistic magnetospheres. Subject headings: black hole physics — magnetic fields — MHD — relativity
منابع مشابه
General relativistic hydrodynamic flows around a static compact object in final stages of accretion flow
Dynamics of stationary axisymmetric configuration of the viscous accreting fluids surrounding a non-rotating compact object in final stages of accretion flow is presented here. For the special case of thin disk approximation, the relativistic fluid equations ignoring self-gravity of the disk are derived in Schwarzschild geometry. For two different state equations, two sets of self-consistent an...
متن کاملCalculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.
In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...
متن کاملGeneral relativistic MHD simulations of monopole magnetospheres of black holes
In this paper we report the results of the first ever time-dependent general rela-tivistic magnetohydrodynamic simulations of the magnetically dominated monopole magnetospheres of black holes. It is found that the numerical solution evolves towards a stable steady-state solution which is very close to the corresponding force-free solution found by Blandford and Znajek. Contrary to the recent cl...
متن کاملPseudo-newtonian Potentials to Describe the Temporal Effects on Relativistic Accretion Disks around Rotating Black Holes and Neutron Stars
Two pseudo-Newtonian potentials, which approximate the angular and epicyclic frequencies of the relativistic accretion disk around rotating (and counter rotating) compact objects, are presented. One of them, the Logarithmically Modified Potential, is a better approximation for the frequencies while the other, the Second-order Expanded potential, also reproduces the specific energy for circular ...
متن کاملSimulations of axisymmetric magnetospheres of neutron stars
In this paper we present the results of time-dependent simulations of dipolar axisymmetric magnetospheres of neutron stars carried out both within the framework of relativistic magnetohydrodynamics and within the framework of resistive force-free electrodynamics. The results of force-free simulations reveal the inability of our numerical method to accommodate the equatorial current sheets of pu...
متن کامل